6,200 research outputs found

    Incentives in Religious Performance: a Stochastic Dominance Approach

    Get PDF
    Using a stochastic dominance approach in an international dataset of about 10,000 Catholic subjects, we show that incentives (based on absolute belief) play a crucial role in religious practice (church attendance and prayer). Furthermore, we find that when both positive (heaven) and negative (hell) incentives are available, the former have a much stronger effect than the latter. The results are confirmed using Kolmogorov-Smirnov tests.Incentives, rewards, punishment, Economics of Religion

    Recursive linear estimation for discrete time systems in the presence of different multiplicative observation noises

    Get PDF
    This paper describes a design for a least mean square error estimator in discrete time systems where the components of the state vector, in measurement equation, are corrupted by different multiplicative noises in addition to observation noise. We show how known results can be considered a particular case of the algorithm stated in this paperState estimation, multiplicative noise, uncertain observations

    Non-linear ripple dynamics on amorphous surfaces patterned by ion-beam sputtering

    Get PDF
    Erosion by ion-beam sputtering (IBS) of amorphous targets at off-normal incidence frequently produces a (nanometric) rippled surface pattern, strongly resembling macroscopic ripples on aeolian sand dunes. Suitable generalization of continuum descriptions of the latter allows us to describe theoretically for the first time the main nonlinear features of ripple dynamics by IBS, namely, wavelength coarsening and non-uniform propagation velocity, that agree with similar results in experiments and discrete models. These properties are seen to be the anisotropic counterparts of in-plane ordering and (interrupted) pattern coarsening in IBS experiments on rotating substrates and at normal incidence.Comment: 5 pages, 3 figure

    Coupling of morphology to surface transport in ion-beam irradiated surfaces. I. Oblique incidence

    Get PDF
    We propose and study a continuum model for the dynamics of amorphizable surfaces undergoing ion-beam sputtering (IBS) at intermediate energies and oblique incidence. After considering the current limitations of more standard descriptions in which a single evolution equation is posed for the surface height, we overcome (some of) them by explicitly formulating the dynamics of the species that transport along the surface, and by coupling it to that of the surface height proper. In this we follow recent proposals inspired by ``hydrodynamic'' descriptions of pattern formation in aeolian sand dunes and ion-sputtered systems. From this enlarged model, and by exploiting the time-scale separation among various dynamical processes in the system, we derive a single height equation in which coefficients can be related to experimental parameters. This equation generalizes those obtained by previous continuum models and is able to account for many experimental features of pattern formation by IBS at oblique incidence, such as the evolution of the irradiation-induced amorphous layer, transverse ripple motion with non-uniform velocity, ripple coarsening, onset of kinetic roughening and other. Additionally, the dynamics of the full two-field model is compared with that of the effective interface equation.Comment: 23 pages, 14 figures. Movies of figures 6, 7, and 8 available at http://gisc.uc3m.es/~javier/Movies

    Solid flow drives surface nanopatterning by ion-beam irradiation

    Get PDF
    Ion Beam Sputtering (IBS) is known to produce surface nanopatterns over macroscopic areas on a wide range of materials. However, in spite of the technological potential of this route to nanostructuring, the physical process by which these surfaces self-organize remains poorly under- stood. We have performed detailed experiments of IBS on Si substrates that validate dynamical and morphological predictions from a hydrodynamic description of the phenomenon. Our results elucidate flow of a nanoscopically thin and highly viscous surface layer, driven by the stress created by the ion-beam, as a description of the system. This type of slow relaxation is akin to flow of macroscopic solids like glaciers or lead pipes, that is driven by defect dynamics.Comment: 12 pages, 4 figure

    The impact of the Kasatochi eruption on the Moon's illumination during the August 2008 lunar eclipse

    Full text link
    The Moon's changeable aspect during a lunar eclipse is largely attributable to variations in the refracted unscattered sunlight absorbed by the terrestrial atmosphere that occur as the satellite crosses the Earth's shadow. The contribution to the Moon's aspect from sunlight scattered at the Earth's terminator is generally deemed minor. However, our analysis of a published spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a major component of the measured spectrum at wavelengths shorter than 600 nm. The conclusion is supported by two distinct features, namely the spectrum's tail at short wavelengths and the unequal absorption by an oxygen collisional complex at two nearby bands. Our findings are consistent with the presence of the volcanic cloud reported at high northern latitudes following the 7-8 August 2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the unscattered sunlight and enhances moderately the scattered component, thus modifying the contrast between the two contributions.Comment: Accepted for publication in Geophysical Research Letter

    Energetic particle acceleration and transport by Alfven/acoustic waves in tokamak-like Solar flares

    Get PDF
    Alfv´en/acoustic waves are ubiquitous in astrophysical as well as in laboratory plasmas. Their interplay with energetic ions is of crucial importance to understanding the energy and particle exchange in astrophysical plasmas as well as to obtaining a viable energy source in magnetically confined fusion devices. In magnetically confined fusion plasmas, an experimental phase-space characterisation of convective and diffusive energetic particle losses induced by Alfv´en/acoustic waves allows for a better understanding of the underlying physics. The relevance of these results in the problem of the anomalous heating of the solar corona is checked by MHD simulations of Tokamak-like Solar flare tubes
    • …
    corecore